1222 字
6 分钟
各类刚体的转动惯量

1. 转轴通过圆环中心与环面垂直的转动惯量#

I=mR2I = mR^2
推导
在圆环上取一质元,其质量为 dm=λdldm = \lambda dl,其中 λ=m2πR\lambda = \frac{m}{2\pi R} 为线密度,dldl 为圆弧元。质元对转轴的元转动惯量为:
dI=R2dm=λR2dldI = R^2 dm = \lambda R^2 dl
对整个圆环积分:

I=02πRλR2dl=λR22πR=2πλR3I = \int_0^{2\pi R} \lambda R^2 dl = \lambda R^2 \cdot 2\pi R = 2\pi \lambda R^3

代入 λ=m2πR\lambda = \frac{m}{2\pi R},得:

I=2πm2πRR3=mR2I = 2\pi \cdot \frac{m}{2\pi R} \cdot R^3 = mR^2

2. 转轴沿圆环直径的转动惯量#

I=mR22I = \frac{mR^2}{2}
推导
质元质量 dm=m2πdθdm = \frac{m}{2\pi} d\thetaθ\theta 为质元与转轴的夹角)。质元的转动惯量元为:

dI=(Rsinθ)2dm=mR22πsin2θdθdI = (R \sin \theta)^2 dm = \frac{mR^2}{2\pi} \sin^2 \theta d\theta

利用三角恒等式 sin2θ=1cos2θ2\sin^2 \theta = \frac{1 - \cos 2\theta}{2},积分得:

I=mR22π02π1cos2θ2dθ=mR24π[02πdθ02πcos2θdθ]I = \frac{mR^2}{2\pi} \int_0^{2\pi} \frac{1 - \cos 2\theta}{2} d\theta = \frac{mR^2}{4\pi} \left[ \int_0^{2\pi} d\theta - \int_0^{2\pi} \cos 2\theta d\theta \right]

第二项积分 02πcos2θdθ=0\int_0^{2\pi} \cos 2\theta d\theta = 0,故:

I=mR24π2π=mR22I = \frac{mR^2}{4\pi} \cdot 2\pi = \frac{mR^2}{2}

3. 转轴通过薄圆盘中心与圆盘垂直的转动惯量#

I=mR22I = \frac{mR^2}{2}
推导
取半径为 rr、宽度 drdr 的细圆环,质量 dm=2πrσdrdm = 2\pi r \sigma dr(面密度 σ=mπR2\sigma = \frac{m}{\pi R^2})。转动惯量元为:

dI=r2dm=2πσr3drdI = r^2 dm = 2\pi \sigma r^3 dr

积分得:

I=0R2πσr3dr=2πσR44=πσR42I = \int_0^R 2\pi \sigma r^3 dr = 2\pi \sigma \cdot \frac{R^4}{4} = \frac{\pi \sigma R^4}{2}

代入 σ=mπR2\sigma = \frac{m}{\pi R^2},得:

I=πmπR2R42=mR22I = \frac{\pi \cdot \frac{m}{\pi R^2} \cdot R^4}{2} = \frac{mR^2}{2}

4. 转轴沿圆筒几何轴的转动惯量#

I=m2(R2+r2)I = \frac{m}{2} (R^2 + r^2)
推导
将圆筒视为由无数同心圆环组成。取半径 rr 的元圆筒,质量 dm=2πσrdrdm = 2\pi \sigma r dr,转动惯量元为:

dI=r2dm=2πσr3drdI = r^2 dm = 2\pi \sigma r^3 dr

总转动惯量为内外半径积分之差:

I=rR2πσr3dr=πσ2(R4r4)I = \int_{r}^{R} 2\pi \sigma r^3 dr = \frac{\pi \sigma}{2} (R^4 - r^4)

σ=mπ(R2r2)\sigma = \frac{m}{\pi (R^2 - r^2)},代入得:

I=πmπ(R2r2)2(R4r4)=m(R2+r2)2I = \frac{\pi \cdot \frac{m}{\pi (R^2 - r^2)}}{2} (R^4 - r^4) = \frac{m(R^2 + r^2)}{2}

5. 转轴沿圆柱体几何轴的转动惯量#

I=mR22I = \frac{mR^2}{2}
推导
将圆柱体分解为无数薄圆盘。取厚度为 dydy 的微圆盘,质量 dm=σπR2dydm = \sigma \pi R^2 dyσ\sigma 为体密度)。薄圆盘的转动惯量元为:

dI=12R2dm=12R2σπR2dydI = \frac{1}{2} R^2 dm = \frac{1}{2} R^2 \cdot \sigma \pi R^2 dy

总转动惯量为:

I=0LσπR42dy=σπR4L2I = \int_0^L \frac{\sigma \pi R^4}{2} dy = \frac{\sigma \pi R^4 L}{2}

因总质量 m=σπR2Lm = \sigma \pi R^2 L,代入得:

I=mR22I = \frac{mR^2}{2}

6. 转轴通过圆柱体中心与几何轴垂直的转动惯量#

I=mr24+mL212I = \frac{mr^2}{4} + \frac{mL^2}{12}
推导
取微细长方体,坐标 (x,y)(x, y),质量元 dm=ρ2zdxdydm = \rho \cdot 2z \cdot dx dyz=rsinθz = r \sin \theta)。转动惯量元为:

dI=(x2+y2)dm=ρ2rsinθ(x2+y2)dxdydI = (x^2 + y^2) dm = \rho \cdot 2r \sin \theta \cdot (x^2 + y^2) dx dy

转换为极坐标:x=rcosθx = r \cos \theta,积分得:

I=ρL/2L/202πr3sinθ(cos2θ+y2)dθdyI = \rho \int_{-L/2}^{L/2} \int_0^{2\pi} r^3 \sin \theta (\cos^2 \theta + y^2) d\theta dy

分离积分并计算,最终结果为:

I=mr24+mL212I = \frac{mr^2}{4} + \frac{mL^2}{12}

7. 转轴通过细棒中心与棒垂直的转动惯量#

I=ml212I = \frac{ml^2}{12}
推导
取质元 dm=λdxdm = \lambda dx(线密度 λ=ml\lambda = \frac{m}{l}),距转轴距离为 xx。转动惯量元为:

dI=x2dm=λx2dxdI = x^2 dm = \lambda x^2 dx

积分区间为 l/2-l/2l/2l/2

I=λl/2l/2x2dx=λ[x33]l/2l/2=λl312I = \lambda \int_{-l/2}^{l/2} x^2 dx = \lambda \left[ \frac{x^3}{3} \right]_{-l/2}^{l/2} = \frac{\lambda l^3}{12}

代入 λ=ml\lambda = \frac{m}{l},得:

I=ml212I = \frac{ml^2}{12}

8. 转轴通过细棒端点与棒垂直的转动惯量#

I=ml23I = \frac{ml^2}{3}
推导
积分区间改为 00ll,转动惯量元相同:

I=λ0lx2dx=λ[x33]0l=λl33I = \lambda \int_0^l x^2 dx = \lambda \left[ \frac{x^3}{3} \right]_0^l = \frac{\lambda l^3}{3}

代入 λ=ml\lambda = \frac{m}{l},得:

I=ml23I = \frac{ml^2}{3}

9. 转轴通过球体沿直径的转动惯量#

I=2mr25I = \frac{2mr^2}{5}
推导
将球体分解为薄圆盘。取距球心 zz 处厚度 dzdz 的圆盘,半径 Rg=r2z2R_g = \sqrt{r^2 - z^2},质量 dm=ρπRg2dzdm = \rho \pi R_g^2 dz。圆盘转动惯量元为:

dI=12Rg2dm=ρπ2(r2z2)2dzdI = \frac{1}{2} R_g^2 dm = \frac{\rho \pi}{2} (r^2 - z^2)^2 dz

总转动惯量为:

I=ρπ2rr(r2z2)2dzI = \frac{\rho \pi}{2} \int_{-r}^r (r^2 - z^2)^2 dz

展开积分并计算,结合总质量 m=43πρr3m = \frac{4}{3}\pi \rho r^3,得:

I=2mr25I = \frac{2mr^2}{5}

10. 转轴沿球壳直径的转动惯量#

I=2mr23I = \frac{2mr^2}{3}
推导
取圆心角 dθd\theta 的圆环,半径 Rg=rsinθR_g = r \sin \theta,质量元 dm=σ2πrsinθrdθdm = \sigma \cdot 2\pi r \sin \theta \cdot r d\theta(面密度 σ=m4πr2\sigma = \frac{m}{4\pi r^2})。转动惯量元为:

dI=Rg2dm=2πσr4sin3θdθdI = R_g^2 dm = 2\pi \sigma r^4 \sin^3 \theta d\theta

积分得:

I=2πσr40πsin3θdθ=8πσr43I = 2\pi \sigma r^4 \int_0^\pi \sin^3 \theta d\theta = \frac{8\pi \sigma r^4}{3}

代入 σ=m4πr2\sigma = \frac{m}{4\pi r^2},得:

I=2mr23I = \frac{2mr^2}{3}

11. 转轴沿底面是正方形的长方体的几何轴的转动惯量#

I=mL26I = \frac{mL^2}{6}
推导
取微元 dm=ρhdxdydm = \rho h dx dy,转动半径 r=x2+y2r = \sqrt{x^2 + y^2}。转动惯量元为:

dI=(x2+y2)dm=ρh(x2+y2)dxdydI = (x^2 + y^2) dm = \rho h (x^2 + y^2) dx dy

[L/2,L/2]×[L/2,L/2][-L/2, L/2] \times [-L/2, L/2] 区域积分:

I=ρhL/2L/2L/2L/2(x2+y2)dxdy=ρhL46I = \rho h \int_{-L/2}^{L/2} \int_{-L/2}^{L/2} (x^2 + y^2) dx dy = \rho h \cdot \frac{L^4}{6}

代入总质量 m=ρhL2m = \rho h L^2,得:

I=mL26I = \frac{mL^2}{6}

12. 转轴沿圆盘直径的转动惯量#

I=mr24I = \frac{mr^2}{4}
推导
取宽度 dzdz 的长条,长度 2r2z22\sqrt{r^2 - z^2},质量元 dm=σ2r2z2dzdm = \sigma \cdot 2\sqrt{r^2 - z^2} dz。转动惯量元为:

dI=RgRgx2σdxdz=4σ3(r2z2)3/2dzdI = \int_{-R_g}^{R_g} x^2 \cdot \sigma dx dz = \frac{4\sigma}{3} (r^2 - z^2)^{3/2} dz

总转动惯量:

I=4σ3rr(r2z2)3/2dz=σπr44I = \frac{4\sigma}{3} \int_{-r}^r (r^2 - z^2)^{3/2} dz = \frac{\sigma \pi r^4}{4}

代入 σ=mπr2\sigma = \frac{m}{\pi r^2},得:

I=mr24I = \frac{mr^2}{4}
分享

如果这篇文章对你有帮助,欢迎分享给更多人!

各类刚体的转动惯量
https://www.laoguantx.cn/posts/momentofinertiaofvariousrigidbodies/
作者
老官童鞋gogo
发布于
2025-03-18
许可协议
CC BY-NC-SA 4.0

部分信息可能已经过时

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00