831 字
4 分钟
空间中切线、法平面、切平面、法线的求法

一、空间曲线的切线与法平面#

1、曲线为参数方程表示#

设空间曲线CC的参数方程为:

{x=x(t)y=y(t)z=z(t)\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}

其中tt为参数。其切向量为:

r(t)=(dxdt, dydt, dzdt)\vec{r}'(t) = \left( \frac{\mathrm{d}x}{\mathrm{d}t},\ \frac{\mathrm{d}y}{\mathrm{d}t},\ \frac{\mathrm{d}z}{\mathrm{d}t} \right)

曲线在点P(x0,y0,z0)P(x_0, y_0, z_0)处的切线方程若t0t_0对应PP,则切线的方向向量为r(t0)\vec{r}'(t_0),其参数方程为:

{x=x0+dxdtt0sy=y0+dydtt0sz=z0+dzdtt0s\begin{cases} x = x_0 + \frac{\mathrm{d}x}{\mathrm{d}t}\bigg|_{t_0} \cdot s \\ y = y_0 + \frac{\mathrm{d}y}{\mathrm{d}t}\bigg|_{t_0} \cdot s \\ z = z_0 + \frac{\mathrm{d}z}{\mathrm{d}t}\bigg|_{t_0} \cdot s \end{cases}

或对称式为:

xx0dxdtt0=yy0dydtt0=zz0dzdtt0\frac{x - x_0}{\frac{\mathrm{d}x}{\mathrm{d}t}\big|_{t_0}} = \frac{y - y_0}{\frac{\mathrm{d}y}{\mathrm{d}t}\big|_{t_0}} = \frac{z - z_0}{\frac{\mathrm{d}z}{\mathrm{d}t}\big|_{t_0}}

曲线的法平面指过曲线某点且垂直于切线的平面,若切线方向向量为v=(a,b,c)\vec{v} = (a, b, c),则法平面的法向量也是v\vec{v},法平面方程为:

a(xx0)+b(yy0)+c(zz0)=0a(x - x_0) + b(y - y_0) + c(z - z_0) = 0

其中(x0,y0,z0)(x_0, y_0, z_0)是曲线上的点。

2、曲线为一般方程表示#

设空间曲线CC

{F(x,y,z)=0G(x,y,z)=0\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}

确定。

曲线上的切向量可以由梯度F\nabla FG\nabla G的叉积给出:

v=F×G=ijkFxFyFzGxGyGz\vec{v} = \nabla F \times \nabla G = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial G}{\partial x} & \frac{\partial G}{\partial y} & \frac{\partial G}{\partial z} \end{vmatrix}

或者使用雅可比行列式:

v=((F,G)(y,z),(F,G)(z,x),(F,G)(x,y))\vec{v}=\left(\frac{\partial(F,G)}{\partial(y,z)},\frac{\partial(F,G)}{\partial(z,x)},\frac{\partial(F,G)}{\partial(x,y)}\right)

P(x0,y0,z0)P(x_0, y_0, z_0)为曲线上的点,则切线参数方程为:

{x=x0+v1ty=y0+v2tz=z0+v3t\begin{cases} x = x_0 + v_1 t \\ y = y_0 + v_2 t \\ z = z_0 + v_3 t \end{cases}

其中v=(v1,v2,v3)\vec{v} = (v_1, v_2, v_3)为上述的切向量。

法平面是同时过P(x0,y0,z0)P(x_0, y_0, z_0)且分别以F\nabla FG\nabla G为法向量的两个平面的交集。即:

{Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)=0Gx(x0,y0,z0)(xx0)+Gy(x0,y0,z0)(yy0)+Gz(x0,y0,z0)(zz0)=0\begin{cases} F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0 \\ G_x(x_0, y_0, z_0)(x - x_0) + G_y(x_0, y_0, z_0)(y - y_0) + G_z(x_0, y_0, z_0)(z - z_0) = 0 \end{cases}

或理解为过点PP,且其法向量垂直于切向量v\vec{v}的所有平面。

二、空间曲面的切平面与法线#

1、曲面为一般方程表示#

设空间曲面SS由标量函数F(x,y,z)=0F(x, y, z) = 0给出。

曲面上某点的法向量为梯度向量:

n=(Fx, Fy, Fz)\vec{n} = \left( \frac{\partial F}{\partial x},\ \frac{\partial F}{\partial y},\ \frac{\partial F}{\partial z} \right)

曲面在点P(x0,y0,z0)P(x_0, y_0, z_0)处的切平面的法向量为n0=(Fx,Fy,Fz)P\vec{n}_0 = \left( F_x, F_y, F_z \right)|_{P},其方程为:

Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)=0F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0

法线为通过P(x0,y0,z0)P(x_0, y_0, z_0)且方向为n0\vec{n}_0的直线,其参数方程为:

{x=x0+Fx(x0,y0,z0)ty=y0+Fy(x0,y0,z0)tz=z0+Fz(x0,y0,z0)t\begin{cases} x = x_0 + F_x(x_0, y_0, z_0)\, t \\ y = y_0 + F_y(x_0, y_0, z_0)\, t \\ z = z_0 + F_z(x_0, y_0, z_0)\, t \end{cases}

2、曲面为参数方程表示#

设空间曲面SS由参数方程

{x=x(u,v)y=y(u,v)z=z(u,v)\begin{cases} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \end{cases}

给出。

在参数点(u0,v0)(u_0, v_0)处,分别计算:

ru=(xu, yu, zu)\vec{r}_u = \left( \frac{\partial x}{\partial u},\ \frac{\partial y}{\partial u},\ \frac{\partial z}{\partial u} \right)rv=(xv, yv, zv)\vec{r}_v = \left( \frac{\partial x}{\partial v},\ \frac{\partial y}{\partial v},\ \frac{\partial z}{\partial v} \right)

则法向量为

n=ru×rv\vec{n} = \vec{r}_u \times \vec{r}_v

其行列式形式为:

n=ijkxuyuzuxvyvzv\vec{n} = \begin{vmatrix}\mathbf{i} & \mathbf{j} & \mathbf{k} \\\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v}\end{vmatrix}

P(x0,y0,z0)P(x_0, y_0, z_0)为对应(u0,v0)(u_0, v_0)的点,则切平面方程为

n1(xx0)+n2(yy0)+n3(zz0)=0n_1(x - x_0) + n_2(y - y_0) + n_3(z - z_0) = 0

其中n=(n1,n2,n3)\vec{n} = (n_1, n_2, n_3)

法线过点P(x0,y0,z0)P(x_0, y_0, z_0),方向为n\vec{n},其参数方程为

{x=x0+n1ty=y0+n2tz=z0+n3t\begin{cases} x = x_0 + n_1 t \\ y = y_0 + n_2 t \\ z = z_0 + n_3 t \end{cases}
分享

如果这篇文章对你有帮助,欢迎分享给更多人!

空间中切线、法平面、切平面、法线的求法
https://www.laoguantx.cn/posts/methodsforfindingthetangentlinenormalplanetangentplaneandnormallineinspace/
作者
老官童鞋gogo
发布于
2025-05-19
许可协议
CC BY-NC-SA 4.0

部分信息可能已经过时

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00