1497 字
7 分钟
曲线坐标系

一、曲线坐标系#

1、曲线坐标系方程#

设空间中有三个变量 u1,u2,u3u^1, u^2, u^3,它们可以唯一地确定空间中一点 PP。空间直角坐标系下,点 PP 的坐标为 (x,y,z)(x, y, z)。如果存在三元函数:

x=x(u1,u2,u3),y=y(u1,u2,u3),z=z(u1,u2,u3)x = x(u^1, u^2, u^3),\quad y = y(u^1, u^2, u^3),\quad z = z(u^1, u^2, u^3)

则称 u1,u2,u3u^1, u^2, u^3 为空间的曲线坐标,(u1,u2,u3)(u^1, u^2, u^3) 为点 PP 的曲线坐标。曲线坐标系的坐标方程就是上面这三条方程:

{x=x(u1,u2,u3)y=y(u1,u2,u3)z=z(u1,u2,u3)\begin{cases} x &= x(u^1, u^2, u^3) \\ y &= y(u^1, u^2, u^3) \\ z &= z(u^1, u^2, u^3) \end{cases}

u2,u3u^2, u^3 固定,u1u^1 变化时,得到一条空间曲线,称为 u1u^1 坐标曲线。同理,分别固定另外两组变量,u2u^2u3u^3 变化时分别得到 u2u^2u3u^3 坐标曲线。以 u1u^1 坐标曲线为例,其切向量为:

ru1u2,u3=comst.\left. \frac{\partial \vec{r}}{\partial u^1} \right|_{u^2, u^3=comst.}

其中,r\vec{r} 为点 PP 的矢径:

r=x(u1,u2,u3)ex+y(u1,u2,u3)ey+z(u1,u2,u3)ez\vec{r} = x(u^1, u^2, u^3) \vec{e}_x + y(u^1, u^2, u^3) \vec{e}_y + z(u^1, u^2, u^3) \vec{e}_z

一般地,三条坐标曲线的切向量分别为:

ai=rui,(i=1,2,3)\vec{a}_i = \frac{\partial \vec{r}}{\partial u^i}, \quad (i=1,2,3)

切向量 ai\vec{a}_i 的模称为拉梅系数 hih_i

hi=ruih_i = \left| \frac{\partial \vec{r}}{\partial u^i} \right|

单位基向量定义为:

ei=aihi=1hirui,(i=1,2,3)\vec{e}_i = \frac{\vec{a}_i}{h_i} = \frac{1}{h_i} \frac{\partial \vec{r}}{\partial u^i}, \quad (i=1,2,3)

单位基向量 e1,e2,e3\vec{e}_1, \vec{e}_2, \vec{e}_3 分别沿着 u1,u2,u3u^1, u^2, u^3 坐标曲线的切向量方向,且模长为 11。如果三个单位基向量相互垂直,我们称为正交曲线坐标系。

2、弧段、面元、体积元#

在曲线坐标系中,任意弧段指的是坐标曲线上的一小段曲线。假设我们考虑 u1u^1 坐标曲线(即 u2,u3u^2, u^3 固定,u1u^1 变化),任意取 u1u^1 的两个值 u1u^1u1+du1u^1 + \mathrm{d}u^1,此时空间中的点 PP 的位置矢量为:

r(u1,u2,u3)\vec{r}(u^1, u^2, u^3)

而相邻点 PP' 的位置矢量为:

r(u1+du1,u2,u3)\vec{r}(u^1+\mathrm{d}u^1, u^2, u^3)

这两点之间的曲线段就称为u1u^1坐标曲线上的任意弧段。同理,也可以定义 u2u^2u3u^3 坐标曲线上的任意弧段。设 uiu^i 为某一坐标曲线的参数,其他两个坐标固定,dui\mathrm{d}u^i 为参数的微小变化,则对应的空间微元弧段为:

dr=ruidui\mathrm{d}\vec{r} = \frac{\partial \vec{r}}{\partial u^i} \mathrm{d}u^i

弧段的长度为

ds=dr=ruidui=hidui\mathrm{d}s = |\mathrm{d}\vec{r}| = \left| \frac{\partial \vec{r}}{\partial u^i} \right| \mathrm{d}u^i = h_i \mathrm{d}u^i

对于任意曲线(不一定是坐标曲线),其微元弧长为:

ds=(xu1du1+xu2du2+xu3du3)2+(yu1du1+yu2du2+yu3du3)2+(zu1du1+zu2du2+zu3du3)2\mathrm{d}s = \sqrt{ \left( \frac{\partial x}{\partial u^1} \mathrm{d}u^1 + \frac{\partial x}{\partial u^2} \mathrm{d}u^2 + \frac{\partial x}{\partial u^3} \mathrm{d}u^3 \right)^2 + \left( \frac{\partial y}{\partial u^1} \mathrm{d}u^1 + \frac{\partial y}{\partial u^2} \mathrm{d}u^2 + \frac{\partial y}{\partial u^3} \mathrm{d}u^3 \right)^2 + \left( \frac{\partial z}{\partial u^1} \mathrm{d}u^1 + \frac{\partial z}{\partial u^2} \mathrm{d}u^2 + \frac{\partial z}{\partial u^3} \mathrm{d}u^3 \right)^2 }

或者记为:

ds2=i,j=13gijduiduj\mathrm{d}s^2 = \sum_{i,j=1}^3 g_{ij} \mathrm{d}u^i \mathrm{d}u^j

其中

gij=ruirujg_{ij} = \frac{\partial \vec{r}}{\partial u^i} \cdot \frac{\partial \vec{r}}{\partial u^j}

为度规张量。

对于正交曲线坐标系,gij=0g_{ij} = 0iji \ne j),则

ds2=h12(du1)2+h22(du2)2+h32(du3)2\mathrm{d}s^2 = h_1^2 (\mathrm{d}u^1)^2 + h_2^2 (\mathrm{d}u^2)^2 + h_3^2 (\mathrm{d}u^3)^2

考虑 u1u^1u2u^2 变化、u3u^3 固定,形成一小块曲面(称为 u1u^1-u2u^2 曲面),其面元 dS\mathrm{d}\vec{S} 的向量形式为:

dS=ru1×ru2du1du2\mathrm{d}\vec{S} = \frac{\partial \vec{r}}{\partial u^1} \times \frac{\partial \vec{r}}{\partial u^2} \, \mathrm{d}u^1 \mathrm{d}u^2

面元的大小(数量值)为:

dS=ru1×ru2du1du2\mathrm{d}S = \left| \frac{\partial \vec{r}}{\partial u^1} \times \frac{\partial \vec{r}}{\partial u^2} \right| \mathrm{d}u^1 \mathrm{d}u^2

如果该坐标系是正交曲线坐标系,即三个基矢互相正交,则:

dS=h1h2du1du2\mathrm{d}S = h_1 h_2 \, \mathrm{d}u^1 \mathrm{d}u^2

其中 h1,h2h_1, h_2 分别为对应坐标的拉梅系数。如果面元是 u2u^2-u3u^3 平面或 u3u^3-u1u^1 平面,选取对应的两个坐标即可。

三个坐标同时变化时,微元体积为:

dV=ru1(ru2×ru3)du1du2du3\mathrm{d}V = \left| \frac{\partial \vec{r}}{\partial u^1} \cdot \left( \frac{\partial \vec{r}}{\partial u^2} \times \frac{\partial \vec{r}}{\partial u^3} \right) \right| \mathrm{d}u^1 \mathrm{d}u^2 \mathrm{d}u^3

对于正交曲线坐标系,因为三基矢正交,所以

dV=h1h2h3du1du2du3\mathrm{d}V = h_1 h_2 h_3 \, \mathrm{d}u^1 \mathrm{d}u^2 \mathrm{d}u^3

3、梯度、散度、旋度#

梯度 f\nabla f 的定义是:

f=(fx,fy,fz)\nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)

也梯度可表示为:

f=i=13ei1hifui\nabla f = \sum_{i=1}^3 \vec{e}_i \frac{1}{h_i} \frac{\partial f}{\partial u^i}

存在下面两个梯度恒等式:

e1h2h3=e2h3h1×e3h1h2=u2×u3\frac{\vec{e}_1}{h_2 h_3} = \frac{\vec{e}_2}{h_3 h_1} \times \frac{\vec{e}_3}{h_1 h_2} = \nabla u_2 \times \nabla u_3e1h2h3=e2h3h1=e3h1h2=0\nabla \cdot \frac{\vec{e}_1}{h_2 h_3} = \nabla \cdot \frac{\vec{e}_2}{h_3 h_1} = \nabla \cdot \frac{\vec{e}_3}{h_1 h_2} = 0

散度在物理上与通量有关系,对应高斯定理:

ΩAdV=ΩnAdS\iiint_{\Omega}\nabla\cdot\vec{A}\mathrm{d}V=\iint_{\partial\Omega}\vec{n}\cdot\vec{A}\mathrm{d}S

其中A\vec{A}为向量,其散度为:

A=1h1h2h3[u1(h2h3A1)+u2(h3h1A2)+u3(h1h2A3)]\nabla \cdot \vec{A} = \frac{1}{h_1 h_2 h_3} \left[ \frac{\partial}{\partial u^1}(h_2 h_3 A_1) + \frac{\partial}{\partial u^2}(h_3 h_1 A_2) + \frac{\partial}{\partial u^3}(h_1 h_2 A_3) \right]

其中 AiA_iA\vec{A}ei\vec{e}_i 方向的分量。

旋度在物理上与环量有关系,对应斯托克斯公式:

S(×A)ndS=CAdr\iint_S\left(\nabla\times\vec{A}\right)\cdot\vec{n}\mathrm{d}S=\oint_C\vec{A}\cdot \mathrm{d}\vec{r}

因此,得到旋度:

×A=1h1h2h3h1e1h2e2h3e3u1u2u3h1A1h2A2h3A3\nabla\times\vec{A}=\frac{1}{h_1h_2h_3}\begin{vmatrix}h_1\vec{e}_1&h_2\vec{e}_2&h_3\vec{e}_3\\\dfrac{\partial}{\partial u_1}&\dfrac{\partial}{\partial u_2}&\dfrac{\partial}{\partial u_3}\\h_1A_1&h_2A_2&h_3A_3\end{vmatrix}

4、拉普拉斯算子#

拉普拉斯算子为:

Δ==1h1h2h3[u1(h2h3h1u1)+u2(h3h1h2u2)+u3(h1h2h3u3)]\Delta=\nabla\cdot\nabla=\frac{1}{h_{1}h_{2}h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(\frac{h_{2}h_{3}}{h_{1}}\frac{\partial}{\partial u_{1}}\right)+\frac{\partial}{\partial u_{2}}\left(\frac{h_{3}h_{1}}{h_{2}}\frac{\partial}{\partial u_{2}}\right)+\frac{\partial}{\partial u_{3}}\left(\frac{h_{1}h_{2}}{h_{3}}\frac{\partial}{\partial u_{3}}\right)\right]

二、直角坐标系#

在直角坐标系下,曲线坐标系的相关参数为:

r=xex+ye+y+zez\vec{r}=x\vec{e}_x+y\vec{e}+y+z\vec{e}_zh1=h2=h3=1h_1=h_2=h_3=1

三、球坐标系#

  • 曲线坐标系相关参数:
u1=r,u2=θ,u3=φu_1=r,u_2=\theta,u_3=\varphi{x=rsinθcosφy=rsinθsinφz=rcosθ\begin{cases} x=r\sin\theta\cos\varphi\\ y=r\sin\theta\sin\varphi\\ z=r\cos\theta \end{cases}r=rsinθcosφex+rsinθsinφey+rcosθez\vec{r}=r\sin\theta\cos\varphi\vec{e}_x+r\sin\theta\sin\varphi\vec{e}_y+r\cos\theta\vec{e}_zhr=1,hθ=r,hφ=rsinθh_r=1,h_\theta=r,h_\varphi=r\sin\thetaer=1hrrr=sinθcosφex+sinθsinφey+cosθez\vec{e}_r=\frac{1}{h_r}\frac{\partial \vec{r}}{\partial r}=\sin\theta\cos\varphi \vec{e}_x+\sin\theta\sin\varphi\vec{e}_y+\cos\theta \vec{e}_zeθ=1hθrr=cosθcosφex+cosθsinφeysinθez\vec{e}_\theta=\frac{1}{h_\theta}\frac{\partial \vec{r}}{\partial r}=\cos\theta\cos\varphi \vec{e}_x+\cos\theta\sin\varphi\vec{e}_y-\sin\theta \vec{e}_zer=1hrrr=sinφex+cosφey\vec{e}_r=\frac{1}{h_r}\frac{\partial \vec{r}}{\partial r}=-\sin\varphi \vec{e}_x+\cos\varphi\vec{e}_y
  • 弧段长度
ds2=hr2(dr)2+hθ2(dθ)2+hφ2(dφ)2=(dr)2+r2(dθ)2+r2sin2θ(dφ)2\mathrm{d}s^2 = h_r^2 (\mathrm{d}r)^2 + h_\theta^2 (\mathrm{d}\theta)^2 + h_\varphi^2 (\mathrm{d}\varphi)^2 = (\mathrm{d}r)^2 + r^2 (\mathrm{d}\theta)^2 + r^2 \sin^2\theta (\mathrm{d}\varphi)^2
  • rr-θ\theta 面(φ\varphi 固定)面元:
dS=hrhθdrdθ=rdrdθ\mathrm{d}S = h_r h_\theta\, \mathrm{d}r\,\mathrm{d}\theta = r\, \mathrm{d}r\,\mathrm{d}\theta
  • θ\theta-φ\varphi 面(rr 固定)面元:
dS=hθhφdθdφ=r2sinθdθdφ\mathrm{d}S = h_\theta h_\varphi\, \mathrm{d}\theta\,\mathrm{d}\varphi = r^2 \sin\theta\, \mathrm{d}\theta\,\mathrm{d}\varphi
  • φ\varphi-rr 面(θ\theta 固定)面元:
dS=hφhrdφdr=rsinθdφdr\mathrm{d}S = h_\varphi h_r\, \mathrm{d}\varphi\,\mathrm{d}r = r \sin\theta\, \mathrm{d}\varphi\,\mathrm{d}r
  • 体积元:
dV=hrhθhφdrdθdφ=r2sinθdrdθdφ\mathrm{d}V = h_r h_\theta h_\varphi\, \mathrm{d}r\,\mathrm{d}\theta\,\mathrm{d}\varphi = r^2 \sin\theta\, \mathrm{d}r\,\mathrm{d}\theta\,\mathrm{d}\varphi
  • 梯度:
f=erfr+eθ1rfθ+eφ1rsinθfφ\nabla f = \vec{e}_r \frac{\partial f}{\partial r} + \vec{e}_\theta \frac{1}{r} \frac{\partial f}{\partial \theta} + \vec{e}_\varphi \frac{1}{r\sin\theta} \frac{\partial f}{\partial \varphi}
  • 散度:
A=1r2r(r2Ar)+1rsinθθ(sinθAθ)+1rsinθAφφ\nabla \cdot \vec{A} = \frac{1}{r^2} \frac{\partial}{\partial r}(r^2 A_r) + \frac{1}{r \sin\theta} \frac{\partial}{\partial \theta} (\sin\theta\, A_\theta) + \frac{1}{r \sin\theta} \frac{\partial A_\varphi}{\partial \varphi}
  • 旋度:
×A=1rsinθ[θ(sinθAφ)Aθφ]ee+1r[1sinθArφr(rAφ)]eθ+1r[r(rAθ)Arθ]eφ\nabla \times \vec{A} = \frac{1}{r \sin\theta} \left[ \frac{\partial}{\partial \theta}(\sin\theta\, A_\varphi) - \frac{\partial A_\theta}{\partial \varphi} \right]\vec{e}_e + \frac{1}{r} \left[ \frac{1}{\sin\theta} \frac{\partial A_r}{\partial \varphi} - \frac{\partial}{\partial r}(r A_\varphi) \right]\vec{e}_\theta + \frac{1}{r} \left[ \frac{\partial}{\partial r}(r A_\theta) - \frac{\partial A_r}{\partial \theta} \right]\vec{e}_\varphi
  • 拉普拉斯算子:
Δu=2u=1r2r(r2ur)+1r2sinθθ(sinθuθ)+1r2sin2θ2uφ2\Delta u=\nabla^2u=\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial u}{\partial r}\right)+\frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial u}{\partial\theta}\right)+\frac{1}{r^2\sin^2\theta}\frac{\partial^2u}{\partial\varphi^2}

四、柱坐标系#

  • 曲线坐标系相关系数:
u1=ρ,u2=φ,u3=zu_1=\rho,u_2=\varphi,u_3=z{x=ρcosφy=ρsinφz=z\begin{cases} x=\rho\cos\varphi\\ y=\rho\sin\varphi\\ z=z \end{cases}r=ρcosφex+ρsinφey+zez\vec{r}=\rho\cos\varphi\vec{\mathrm{e}}_{x}+\rho\sin\varphi\vec{\mathrm{e}}_{y}+z\vec{\mathrm{e}}_{z}hρ=1,hφ=ρ,hz=1h_\rho=1,h_\varphi=\rho,h_z=1eρ=1hρrρ=cosφex+sinφey\vec{e}_\rho=\frac{1}{h_\rho}\frac{\partial\vec{r}}{\partial\rho}=\cos\varphi\vec{\mathrm{e}}_{x}+\sin\varphi\vec{\mathrm{e}}_{y}eφ=1hφrφ=sinφex+cosφey\vec{e}_\varphi=\frac{1}{h_\varphi}\frac{\partial\vec{r}}{\partial\varphi}=-\sin\varphi\vec{\mathrm{e}}_{x}+\cos\varphi\vec{\mathrm{e}}_{y}ez=1hzrz=ez\vec{e}_z=\frac{1}{h_z}\frac{\partial\vec{r}}{\partial z}=\vec{\mathrm{e}}_{z}
  • 弧段长度:
ds2=hρ2(dρ)2+hφ2(dφ)2+hz2(dz)2=(dρ)2+ρ2(dφ)2+(dz)2\mathrm{d}s^2 = h_\rho^2 (\mathrm{d}\rho)^2 + h_\varphi^2 (\mathrm{d}\varphi)^2 + h_z^2 (\mathrm{d}z)^2 = (\mathrm{d}\rho)^2 + \rho^2 (\mathrm{d}\varphi)^2 + (\mathrm{d}z)^2
  • ρ\rho-φ\varphi 面(zz 固定)面元:
dS=hρhφdρdφ=ρdρdφ\mathrm{d}S = h_\rho h_\varphi\, \mathrm{d}\rho\,\mathrm{d}\varphi = \rho\, \mathrm{d}\rho\,\mathrm{d}\varphi
  • φ\varphi-zz 面(ρ\rho 固定)面元:
dS=hφhzdφdz=ρdφdz\mathrm{d}S = h_\varphi h_z\, \mathrm{d}\varphi\,\mathrm{d}z = \rho\, \mathrm{d}\varphi\,\mathrm{d}z
  • zz-ρ\rho 面(φ\varphi 固定)面元:
dS=hzhρdzdρ=dzdρ\mathrm{d}S = h_z h_\rho\, \mathrm{d}z\,\mathrm{d}\rho = \mathrm{d}z\,\mathrm{d}\rho
  • 体积元:
dV=hρhφhzdρdφdz=ρdρdφdz\mathrm{d}V = h_\rho h_\varphi h_z\, \mathrm{d}\rho\,\mathrm{d}\varphi\,\mathrm{d}z = \rho\, \mathrm{d}\rho\,\mathrm{d}\varphi\,\mathrm{d}z
  • 梯度:
f=eρfρ+eφ1ρfφ+ezfz\nabla f = \vec{e}_\rho \frac{\partial f}{\partial \rho} + \vec{e}_\varphi \frac{1}{\rho} \frac{\partial f}{\partial \varphi} + \vec{e}_z \frac{\partial f}{\partial z}
  • 散度:
A=1ρρ(ρAρ)+1ρAφφ+Azz\nabla \cdot \vec{A} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_\rho) + \frac{1}{\rho} \frac{\partial A_\varphi}{\partial \varphi} + \frac{\partial A_z}{\partial z}
  • 旋度:
×A=[1ρ(Azφz(ρAφ))]eρ+[AρzAzρ]eφ+[1ρ(ρ(ρAφ)Aρφ)]ez\nabla \times \vec{A} = \left[ \frac{1}{\rho} \left( \frac{\partial A_z}{\partial \varphi} - \frac{\partial}{\partial z}(\rho A_\varphi) \right) \right] \vec{e}_\rho + \left[ \frac{\partial A_\rho}{\partial z} - \frac{\partial A_z}{\partial \rho} \right] \vec{e}_\varphi + \left[ \frac{1}{\rho} \left( \frac{\partial}{\partial \rho}(\rho A_\varphi) - \frac{\partial A_\rho}{\partial \varphi} \right) \right] \vec{e}_z
  • 拉普拉斯算子:
Δu=1ρρ(ρuρ)+1ρ22uφ2+2uz2\Delta u=\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial u}{\partial\rho}\right)+\frac{1}{\rho^2}\frac{\partial^2u}{\partial\varphi^2}+\frac{\partial^2u}{\partial z^2}
分享

如果这篇文章对你有帮助,欢迎分享给更多人!

曲线坐标系
https://www.laoguantx.cn/posts/curvilinearcoordinatesystem/
作者
老官童鞋gogo
发布于
2025-11-14
许可协议
CC BY-NC-SA 4.0

部分信息可能已经过时

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00