| 1 | ∫xndx | n+1xn+1+C(n=−1) |
| 2 | ∫dx | x+C |
| 3 | ∫adx | ax+C |
| 4 | ∫x1dx | ln∣x∣+C |
| 5 | ∫exdx | ex+C |
| 6 | ∫axdx | lnaax+C(a>0,a=1) |
| 7 | ∫sinxdx | −cosx+C |
| 8 | ∫cosxdx | sinx+C |
| 9 | ∫tanxdx | −ln∣cosx∣+C |
| 10 | ∫cotxdx | ln∣sinx∣+C |
| 11 | ∫secxdx | ln∣secx+tanx∣+C |
| 12 | ∫cscxdx | ln∣cscx−cotx∣+C |
| 13 | ∫sec2xdx | tanx+C |
| 14 | ∫csc2xdx | −cotx+C |
| 15 | ∫secxtanxdx | secx+C |
| 16 | ∫cscxcotxdx | −cscx+C |
| 17 | ∫1+x21dx | arctanx+C |
| 18 | ∫1−x21dx | arcsinx+C |
| 19 | ∫x2−11dx | ln∣x+x2−1∣+C |
| 20 | ∫lnxdx | xlnx−x+C |
| 21 | ∫xexdx | (x−1)ex+C |
| 22 | ∫xsinxdx | −xcosx+sinx+C |
| 23 | ∫xcosxdx | xsinx+cosx+C |
| 24 | ∫eaxdx | a1eax+C |
| 25 | ∫a2+x21dx | a1arctan(ax)+C |
| 26 | ∫a2−x21dx | arcsin(ax)+C |
| 27 | ∫x2−a21dx | 2a1lnx+ax−a+C |
| 28 | ∫∣x∣1dx | sgn(x)ln∣x∣+C |
| 29 | ∫arctanxdx | xarctanx−21ln(1+x2)+C |
| 30 | ∫arcsinxdx | xarcsinx+1−x2+C |