1723 字
9 分钟
常用积分表

一、常见积分表#

序号积分表达式积分结果
1xndx\int x^n \, \mathrm{d}xxn+1n+1+C(n1)\dfrac{x^{n+1}}{n+1} + C \quad (n \neq -1)
2dx\int \mathrm{d}xx+Cx + C
3adx\int a \, \mathrm{d}xax+Ca x + C
41xdx\int \frac{1}{x} \, \mathrm{d}xlnx+C\ln\vert x\vert + C
5exdx\int e^{x} \, \mathrm{d}xex+Ce^{x} + C
6axdx\int a^{x} \, \mathrm{d}xaxlna+C(a>0,a1)\dfrac{a^{x}}{\ln a} + C \quad (a>0, a\neq 1)
7sinxdx\int \sin x \, \mathrm{d}xcosx+C-\cos x + C
8cosxdx\int \cos x \, \mathrm{d}xsinx+C\sin x + C
9tanxdx\int \tan x \, \mathrm{d}xlncosx+C-\ln\vert \cos x\vert + C
10cotxdx\int \cot x \, \mathrm{d}xlnsinx+C\ln\vert \sin x\vert + C
11secxdx\int \sec x \, \mathrm{d}xlnsecx+tanx+C\ln\vert \sec x + \tan x\vert + C
12cscxdx\int \csc x \, \mathrm{d}xlncscxcotx+C\ln\vert \csc x - \cot x\vert + C
13sec2xdx\int \sec^2 x \, \mathrm{d}xtanx+C\tan x + C
14csc2xdx\int \csc^2 x \, \mathrm{d}xcotx+C-\cot x + C
15secxtanxdx\int \sec x \tan x \, \mathrm{d}xsecx+C\sec x + C
16cscxcotxdx\int \csc x \cot x \, \mathrm{d}xcscx+C-\csc x + C
1711+x2dx\int \frac{1}{1 + x^2} \, \mathrm{d}xarctanx+C\arctan x + C
1811x2dx\int \frac{1}{\sqrt{1 - x^2}} \, \mathrm{d}xarcsinx+C\arcsin x + C
191x21dx\int \frac{1}{\sqrt{x^2 - 1}} \, \mathrm{d}xlnx+x21+C\ln\vert x + \sqrt{x^2 - 1}\vert + C
20lnxdx\int \ln x \, \mathrm{d}xxlnxx+Cx \ln x - x + C
21xexdx\int x e^{x} \, \mathrm{d}x(x1)ex+C(x-1)e^x + C
22xsinxdx\int x \sin x \, \mathrm{d}x ⁣xcosx+sinx+C-\!x \cos x + \sin x + C
23xcosxdx\int x \cos x \, \mathrm{d}xxsinx+cosx+Cx \sin x + \cos x + C
24eaxdx\int e^{a x} \, \mathrm{d}x1aeax+C\frac{1}{a} e^{a x} + C
251a2+x2dx\int \frac{1}{a^2 + x^2} \, \mathrm{d}x1aarctan(xa)+C\frac{1}{a} \arctan\left(\frac{x}{a}\right) + C
261a2x2dx\int \frac{1}{\sqrt{a^2 - x^2}} \, \mathrm{d}xarcsin(xa)+C\arcsin\left(\frac{x}{a}\right) + C
271x2a2dx\int \frac{1}{x^2 - a^2} \, \mathrm{d}x12alnxax+a+C\frac{1}{2a} \ln\left\vert \frac{x-a}{x+a}\right\vert + C
281xdx\int \frac{1}{\vert x\vert } \, \mathrm{d}xsgn(x)lnx+C\operatorname{sgn}(x)\ln\vert x\vert + C
29arctanxdx\int \arctan x \, \mathrm{d}xxarctanx12ln(1+x2)+Cx \arctan x - \frac{1}{2} \ln(1 + x^2) + C
30arcsinxdx\int \arcsin x \, \mathrm{d}xxarcsinx+1x2+Cx \arcsin x + \sqrt{1 - x^2} + C

二、详细证明#

下面对上述表格中的部分积分公式进行详细推导。其余积分的推导可类似进行。


1. 幂函数积分#

xndx=xn+1n+1+C(n1)\int x^n \, \mathrm{d}x = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)

证明:

xnx^n积分,设F(x)=xn+1n+1F(x) = \frac{x^{n+1}}{n+1},则

ddxF(x)=ddx(xn+1n+1)=xn\frac{\mathrm{d}}{\mathrm{d}x} F(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{x^{n+1}}{n+1} \right) = x^n

因此,

xndx=xn+1n+1+C\int x^n \, \mathrm{d}x = \frac{x^{n+1}}{n+1} + C

2. dx=x+C\int \mathrm{d}x = x + C#

证明:

ddxx=1\frac{\mathrm{d}}{\mathrm{d}x} x = 1

故积分结果为x+Cx + C


3. adx=ax+C\int a \, \mathrm{d}x = a x + C#

证明:

ddx(ax)=a\frac{\mathrm{d}}{\mathrm{d}x} (a x) = a

故积分结果为ax+Ca x + C


4. 1xdx\int \frac{1}{x} \mathrm{d}x#

1xdx=lnx+C\int \frac{1}{x} \, \mathrm{d}x = \ln|x| + C

证明:

ddxlnx=1x\frac{\mathrm{d}}{\mathrm{d}x}\ln|x| = \frac{1}{x},故直接得证。


5. exdx\int e^x \, \mathrm{d}x#

exdx=ex+C\int e^{x} \, \mathrm{d}x = e^{x} + C

证明:

ddxex=ex\frac{\mathrm{d}}{\mathrm{d}x} e^x = e^x,故直接得证。


6. axdx\int a^x \, \mathrm{d}x#

axdx=axlna+C,(a>0,a1)\int a^{x} \, \mathrm{d}x = \frac{a^{x}}{\ln a} + C, \quad (a > 0, a \neq 1)

证明:

ddxax=axlna\frac{\mathrm{d}}{\mathrm{d}x} a^x = a^x \ln a,于是

ddx(axlna)=ax\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{a^x}{\ln a} \right) = a^x

7. sinxdx\int \sin x \, \mathrm{d}x#

sinxdx=cosx+C\int \sin x \, \mathrm{d}x = -\cos x + C

证明:

ddx(cosx)=sinx\frac{\mathrm{d}}{\mathrm{d}x}(-\cos x) = \sin x


8. cosxdx\int \cos x \, \mathrm{d}x#

cosxdx=sinx+C\int \cos x \, \mathrm{d}x = \sin x + C

证明:

ddx(sinx)=cosx\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x


9. tanxdx\int \tan x \, \mathrm{d}x#

tanxdx=lncosx+C\int \tan x \, \mathrm{d}x = -\ln|\cos x| + C

证明:

tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}

u=cosxu = \cos xdu=sinxdx    du=sinxdx\mathrm{d}u = -\sin x \mathrm{d}x \implies -\mathrm{d}u = \sin x \mathrm{d}x

tanxdx=sinxcosxdx\int \tan x \, \mathrm{d}x = \int \frac{\sin x}{\cos x} \mathrm{d}x

u=cosxu = \cos x,则du=sinxdx\mathrm{d}u = -\sin x \mathrm{d}x,所以

tanxdx=1udu=lnu+C=lncosx+C\int \tan x \, \mathrm{d}x = -\int \frac{1}{u} \mathrm{d}u = -\ln|u| + C = -\ln|\cos x| + C

10. cotxdx=lnsinx+C\int \cot x \, \mathrm{d}x = \ln|\sin x| + C#

证明:

cotx=cosxsinx\cot x = \frac{\cos x}{\sin x},令u=sinxu = \sin xdu=cosxdx\mathrm{d}u = \cos x \mathrm{d}x,则

cotxdx=cosxsinxdx=1udu=lnu+C=lnsinx+C\int \cot x \, \mathrm{d}x = \int \frac{\cos x}{\sin x} \mathrm{d}x = \int \frac{1}{u} \mathrm{d}u = \ln|u| + C = \ln|\sin x| + C

11. secxdx=lnsecx+tanx+C\int \sec x \, \mathrm{d}x = \ln|\sec x + \tan x| + C#

证明:

考虑分子分母同乘secx+tanx\sec x + \tan x

secxdx=secx(secx+tanx)secx+tanxdx=sec2x+secxtanxsecx+tanxdx\int \sec x \mathrm{d}x = \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x} \mathrm{d}x = \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} \mathrm{d}x

u=secx+tanxu = \sec x + \tan x,则

dudx=secxtanx+sec2x=sec2x+secxtanx\frac{\mathrm{d}u}{\mathrm{d}x} = \sec x \tan x + \sec^2 x = \sec^2 x + \sec x \tan x

所以

secxdx=1udu=lnu+C=lnsecx+tanx+C\int \sec x \mathrm{d}x = \int \frac{1}{u} \mathrm{d}u = \ln|u| + C = \ln|\sec x + \tan x| + C

12. cscxdx=lncscxcotx+C\int \csc x \, \mathrm{d}x = \ln|\csc x - \cot x| + C#

证明:

分子分母同乘cscxcotx\csc x - \cot x

cscxdx=cscx(cscxcotx)cscxcotxdx=csc2xcscxcotxcscxcotxdx\int \csc x \mathrm{d}x = \int \frac{\csc x (\csc x - \cot x)}{\csc x - \cot x} \mathrm{d}x = \int \frac{\csc^2 x - \csc x \cot x}{\csc x - \cot x} \mathrm{d}x

u=cscxcotxu = \csc x - \cot x,则

dudx=cscxcotx+csc2x=csc2xcscxcotx\frac{\mathrm{d}u}{\mathrm{d}x} = -\csc x \cot x + \csc^2 x = \csc^2 x - \csc x \cot x

所以

cscxdx=1udu=lnu+C=lncscxcotx+C\int \csc x \mathrm{d}x = \int \frac{1}{u} \mathrm{d}u = \ln|u| + C = \ln|\csc x - \cot x| + C

13. sec2xdx=tanx+C\int \sec^2 x \, \mathrm{d}x = \tan x + C#

证明:

ddxtanx=sec2x\frac{\mathrm{d}}{\mathrm{d}x} \tan x = \sec^2 x

14. csc2xdx=cotx+C\int \csc^2 x \, \mathrm{d}x = -\cot x + C#

证明:

ddx(cotx)=csc2x\frac{\mathrm{d}}{\mathrm{d}x} (-\cot x) = \csc^2 x

15. secxtanxdx=secx+C\int \sec x \tan x \, \mathrm{d}x = \sec x + C#

证明:

ddxsecx=secxtanx\frac{\mathrm{d}}{\mathrm{d}x} \sec x = \sec x \tan x

16. cscxcotxdx=cscx+C\int \csc x \cot x \, \mathrm{d}x = -\csc x + C#

证明:

ddx(cscx)=cscxcotx\frac{\mathrm{d}}{\mathrm{d}x} (-\csc x) = \csc x \cot x

17. 11+x2dx\int \frac{1}{1+x^2}\mathrm{d}x#

11+x2dx=arctanx+C\int \frac{1}{1 + x^2} \, \mathrm{d}x = \arctan x + C

证明:

ddxarctanx=11+x2\frac{\mathrm{d}}{\mathrm{d}x} \arctan x = \frac{1}{1 + x^2}


18. 11x2dx\int \frac{1}{\sqrt{1-x^2}}\mathrm{d}x#

11x2dx=arcsinx+C\int \frac{1}{\sqrt{1 - x^2}} \, \mathrm{d}x = \arcsin x + C

证明:

ddxarcsinx=11x2\frac{\mathrm{d}}{\mathrm{d}x} \arcsin x = \frac{1}{\sqrt{1 - x^2}}


19. 1x21dx=lnx+x21+C\int \frac{1}{\sqrt{x^2 - 1}} \, \mathrm{d}x = \ln|x + \sqrt{x^2 - 1}| + C#

证明:

x=coshtx = \cosh tdx=sinhtdt\mathrm{d}x = \sinh t \mathrm{d}tx21=sinht\sqrt{x^2 - 1} = \sinh t

1x21dx=1sinhtsinhtdt=1dt=t+C\int \frac{1}{\sqrt{x^2 - 1}} \mathrm{d}x = \int \frac{1}{\sinh t} \sinh t \mathrm{d}t = \int 1 \mathrm{d}t = t + C

x=cosht    t=arcoshx=lnx+x21x = \cosh t \implies t = \operatorname{arcosh} x = \ln|x + \sqrt{x^2 - 1}|

1x21dx=lnx+x21+C\int \frac{1}{\sqrt{x^2 - 1}} \mathrm{d}x = \ln|x + \sqrt{x^2 - 1}| + C

20. lnxdx\int \ln x \, \mathrm{d}x#

分部积分法,令u=lnxu = \ln xdv=dx\mathrm{d}v = \mathrm{d}x,则du=1xdx\mathrm{d}u = \frac{1}{x} \mathrm{d}xv=xv = x

lnxdx=xlnxx1xdx=xlnx1dx=xlnxx+C\int \ln x \, \mathrm{d}x = x \ln x - \int x \cdot \frac{1}{x} \mathrm{d}x = x \ln x - \int 1 \, \mathrm{d}x = x \ln x - x + C

21. xexdx=(x1)ex+C\int x e^x \, \mathrm{d}x = (x-1) e^x + C#

证明:

分部积分,u=xu = x, dv=exdx\mathrm{d}v = e^x \mathrm{d}x, du=dx\mathrm{d}u = \mathrm{d}x, v=exv = e^x

xexdx=xexexdx=xexex+C=(x1)ex+C\int x e^x \mathrm{d}x = x e^x - \int e^x \mathrm{d}x = x e^x - e^x + C = (x-1) e^x + C

22. xsinxdx\int x \sin x \, \mathrm{d}x#

分部积分法,令u=xu = xdv=sinxdx\mathrm{d}v = \sin x \, \mathrm{d}x,则du=dx\mathrm{d}u = \mathrm{d}xv=cosxv = -\cos x

xsinxdx=xcosx+cosxdx=xcosx+sinx+C\int x \sin x \, \mathrm{d}x = -x \cos x + \int \cos x \, \mathrm{d}x = -x \cos x + \sin x + C

23. xcosxdx\int x \cos x \, \mathrm{d}x#

分部积分法,令u=xu = xdv=cosxdx\mathrm{d}v = \cos x \, \mathrm{d}x,则du=dx\mathrm{d}u = \mathrm{d}xv=sinxv = \sin x

xcosxdx=xsinxsinxdx=xsinx+cosx+C\int x \cos x \, \mathrm{d}x = x \sin x - \int \sin x \, \mathrm{d}x = x \sin x + \cos x + C

24. eaxdx=1aeax+C\int e^{a x} \, \mathrm{d}x = \frac{1}{a} e^{a x} + C#

证明:

ddxeax=aeax\frac{\mathrm{d}}{\mathrm{d}x} e^{a x} = a e^{a x},所以

eaxdx=1aeax+C\int e^{a x} \mathrm{d}x = \frac{1}{a} e^{a x} + C

25. 1a2+x2dx\int \frac{1}{a^2 + x^2} \, \mathrm{d}x#

x=atanθx = a \tan \theta,则dx=asec2θdθ\mathrm{d}x = a \sec^2 \theta \mathrm{d}\thetaa2+x2=a2+a2tan2θ=a2sec2θa^2 + x^2 = a^2 + a^2 \tan^2 \theta = a^2 \sec^2 \theta

1a2+x2dx=1a2sec2θasec2θdθ=1adθ=1aθ+C\int \frac{1}{a^2 + x^2} \mathrm{d}x = \int \frac{1}{a^2 \sec^2 \theta} a \sec^2 \theta \mathrm{d}\theta = \int \frac{1}{a} \mathrm{d}\theta = \frac{1}{a} \theta + C

x=atanθ    θ=arctan(xa)x = a \tan \theta \implies \theta = \arctan\left(\frac{x}{a}\right)

1a2+x2dx=1aarctan(xa)+C\int \frac{1}{a^2 + x^2} \mathrm{d}x = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C

26. 1a2x2dx\int \frac{1}{\sqrt{a^2 - x^2}} \mathrm{d}x#

x=asinθx = a \sin \thetadx=acosθdθ\mathrm{d}x = a \cos \theta \mathrm{d}\thetaa2x2=acosθ\sqrt{a^2 - x^2} = a \cos \theta

1a2x2dx=1acosθacosθdθ=1dθ=θ+C\int \frac{1}{\sqrt{a^2 - x^2}} \mathrm{d}x = \int \frac{1}{a \cos \theta} a \cos \theta \mathrm{d}\theta = \int 1 \mathrm{d}\theta = \theta + C

x=asinθ    θ=arcsin(xa)x = a \sin \theta \implies \theta = \arcsin \left(\frac{x}{a}\right)

1a2x2dx=arcsin(xa)+C\int \frac{1}{\sqrt{a^2 - x^2}} \mathrm{d}x = \arcsin \left(\frac{x}{a}\right) + C

27. 1x2a2dx\int \frac{1}{x^2 - a^2} \mathrm{d}x#

可拆分为部分分式:

1x2a2=12a(1xa1x+a)\frac{1}{x^2 - a^2} = \frac{1}{2a}\left( \frac{1}{x-a} - \frac{1}{x+a} \right)

所以

1x2a2dx=12a(1xa1x+a)dx=12alnxax+a+C\int \frac{1}{x^2 - a^2} \mathrm{d}x = \frac{1}{2a} \int \left( \frac{1}{x-a} - \frac{1}{x+a} \right) \mathrm{d}x = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C

28. 1xdx=sgn(x)lnx+C\int \frac{1}{|x|} \mathrm{d}x = \operatorname{sgn}(x) \ln|x| + C#

证明:

1x=1x\frac{1}{|x|} = \frac{1}{x} (当x>0x>0), =1x= -\frac{1}{x} (当x<0x<0) 所以

1xdx={lnx+C,x>0ln(x)+C,x<0\int \frac{1}{|x|} \mathrm{d}x = \begin{cases} \ln x + C, & x>0 \\ -\ln(-x) + C, & x < 0 \end{cases}

合并表示为sgn(x)lnx+C\operatorname{sgn}(x)\ln|x| + C


29. arctanxdx=xarctanx12ln(1+x2)+C\int \arctan x \, \mathrm{d}x = x \arctan x - \frac{1}{2} \ln(1+x^2) + C#

证明: 分部积分,u=arctanxu = \arctan x, dv=dx\mathrm{d}v = \mathrm{d}x, du=11+x2dx\mathrm{d}u = \frac{1}{1+x^2} \mathrm{d}x, v=xv = x

arctanxdx=xarctanxx1+x2dx\int \arctan x \mathrm{d}x = x \arctan x - \int \frac{x}{1+x^2} \mathrm{d}x

w=1+x2w = 1 + x^2, dw=2xdx\mathrm{d}w = 2x \mathrm{d}x

x1+x2dx=121wdw=12lnw+C=12ln(1+x2)\int \frac{x}{1+x^2} \mathrm{d}x = \frac{1}{2} \int \frac{1}{w} \mathrm{d}w = \frac{1}{2} \ln|w| + C = \frac{1}{2} \ln(1+x^2)

所以

arctanxdx=xarctanx12ln(1+x2)+C\int \arctan x \mathrm{d}x = x \arctan x - \frac{1}{2} \ln(1+x^2) + C

30. arcsinxdx=xarcsinx+1x2+C\int \arcsin x \, \mathrm{d}x = x \arcsin x + \sqrt{1-x^2} + C#

证明:

分部积分,u=arcsinxu = \arcsin x, dv=dx\mathrm{d}v = \mathrm{d}x, du=11x2dx\mathrm{d}u = \frac{1}{\sqrt{1-x^2}} \mathrm{d}x, v=xv = x

arcsinxdx=xarcsinxx11x2dx\int \arcsin x \mathrm{d}x = x \arcsin x - \int x \cdot \frac{1}{\sqrt{1-x^2}} \mathrm{d}x

对于x(1x2)1/2dx\int x (1-x^2)^{-1/2} \mathrm{d}x,令w=1x2w = 1-x^2, dw=2xdx    12dw=xdx\mathrm{d}w = -2x \mathrm{d}x \implies -\frac{1}{2} \mathrm{d}w = x \mathrm{d}x

x(1x2)1/2dx=12w1/2dw=122w1/2=1x2\int x (1-x^2)^{-1/2} \mathrm{d}x = -\frac{1}{2} \int w^{-1/2} \mathrm{d}w = -\frac{1}{2} \cdot 2 w^{1/2} = - \sqrt{1-x^2}

所以

arcsinxdx=xarcsinx+1x2+C\int \arcsin x \mathrm{d}x = x \arcsin x + \sqrt{1-x^2} + C
分享

如果这篇文章对你有帮助,欢迎分享给更多人!

常用积分表
https://www.laoguantx.cn/posts/commonintegraltable/
作者
老官童鞋gogo
发布于
2025-06-12
许可协议
CC BY-NC-SA 4.0

部分信息可能已经过时

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00