554 字
3 分钟
不同情况下两列波叠加情况计算

设两列波的表达式均为:

f1(x,t)=A1cos(k1x+ω1t+φ1)f_1(x,t) = A_1 \cos(k_1 x + \omega_1 t + \varphi_1) f2(x,t)=A2cos(k2x+ω2t+φ2)f_2(x,t) = A_2 \cos(k_2 x + \omega_2 t + \varphi_2)

常见叠加情况如下:

一、同频同波数同相位(完全相同的波)#

f(x,t)=f1(x,t)+f2(x,t)=A1cos(kx+ωt+φ)+A2cos(kx+ωt+φ)f(x,t) = f_1(x,t) + f_2(x,t) = A_1 \cos(kx + \omega t + \varphi) + A_2 \cos(kx + \omega t + \varphi)

直接合并:

f(x,t)=(A1+A2)cos(kx+ωt+φ)f(x,t) = (A_1 + A_2)\cos(kx + \omega t + \varphi)

二、同频同波数,不同初相位#

f(x,t)=A1cos(kx+ωt+φ1)+A2cos(kx+ωt+φ2)f(x,t) = A_1 \cos(kx + \omega t + \varphi_1) + A_2 \cos(kx + \omega t + \varphi_2)

利用余弦叠加公式:

A1cosθ1+A2cosθ2=Rcos(θ+α)A_1 \cos\theta_1 + A_2 \cos\theta_2 = R \cos(\theta + \alpha)

具体推导:

θ=kx+ωt\theta = kx + \omega t

f(x,t)=A1cos(θ+φ1)+A2cos(θ+φ2)f(x,t) = A_1 \cos(\theta + \varphi_1) + A_2 \cos(\theta + \varphi_2)

利用复数表示(欧拉公式):

A1cos(θ+φ1)+A2cos(θ+φ2)=Re[A1ei(θ+φ1)+A2ei(θ+φ2)]A_1 \cos(\theta + \varphi_1) + A_2 \cos(\theta + \varphi_2) = \operatorname{Re}\left[ A_1 e^{i(\theta + \varphi_1)} + A_2 e^{i(\theta + \varphi_2)} \right]

合并:

=Re[(A1eiφ1+A2eiφ2)eiθ]= \operatorname{Re}\left[ (A_1 e^{i\varphi_1} + A_2 e^{i\varphi_2}) e^{i\theta} \right]

A1eiφ1+A2eiφ2=ReiαA_1 e^{i\varphi_1} + A_2 e^{i\varphi_2} = R e^{i\alpha}

所以

f(x,t)=Rcos(θ+α)=Rcos(kx+ωt+α)f(x,t) = R \cos(\theta + \alpha) = R \cos(kx + \omega t + \alpha)

其中

R=A12+A22+2A1A2cos(φ1φ2)R = \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos(\varphi_1 - \varphi_2)}tanα=A1sinφ1+A2sinφ2A1cosφ1+A2cosφ2\tan\alpha = \frac{A_1 \sin\varphi_1 + A_2 \sin\varphi_2}{A_1 \cos\varphi_1 + A_2 \cos\varphi_2}

三、同频同相位,不同波数(不同波长)#

f(x,t)=A1cos(k1x+ωt+φ)+A2cos(k2x+ωt+φ)f(x,t) = A_1 \cos(k_1 x + \omega t + \varphi) + A_2 \cos(k_2 x + \omega t + \varphi)

此时不能直接合并为一个余弦,但可用和角公式写成:

利用

cosα+cosβ=2cos(α+β2)cos(αβ2)\cos\alpha + \cos\beta = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)

A1=A2=AA_1 = A_2 = Aφ1=φ2=0\varphi_1 = \varphi_2 = 0,则

f(x,t)=Acos(k1x+ωt)+Acos(k2x+ωt)f(x,t) = A \cos(k_1 x + \omega t) + A \cos(k_2 x + \omega t)=2Acos(k1x+ωt+k2x+ωt2)cos(k1x+ωt(k2x+ωt)2)= 2A \cos\left(\frac{k_1 x + \omega t + k_2 x + \omega t}{2}\right)\cos\left(\frac{k_1 x + \omega t - (k_2 x + \omega t)}{2}\right)=2Acos((k1+k2)x2+ωt)cos((k1k2)x2)= 2A \cos\left(\frac{(k_1 + k_2)x}{2} + \omega t\right)\cos\left(\frac{(k_1 - k_2)x}{2}\right)

四、同波数同相位,不同频率(不同周期)#

f(x,t)=A1cos(kx+ω1t+φ)+A2cos(kx+ω2t+φ)f(x,t) = A_1 \cos(k x + \omega_1 t + \varphi) + A_2 \cos(k x + \omega_2 t + \varphi)

类似方法:

cosα+cosβ=2cos(α+β2)cos(αβ2)\cos\alpha + \cos\beta = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)

A1=A2=AA_1 = A_2 = Aφ1=φ2=0\varphi_1 = \varphi_2 = 0,则

f(x,t)=Acos(kx+ω1t)+Acos(kx+ω2t)f(x,t) = A \cos(k x + \omega_1 t) + A \cos(k x + \omega_2 t)=2Acos(kx+ω1+ω22t)cos(ω1ω22t)= 2A \cos\left(k x + \frac{\omega_1 + \omega_2}{2} t\right) \cos\left(\frac{\omega_1 - \omega_2}{2} t\right)

五、不同波数、不同频率(形成拍或更复杂干涉)#

一般形式:

f(x,t)=A1cos(k1x+ω1t+φ1)+A2cos(k2x+ω2t+φ2)f(x,t) = A_1 \cos(k_1 x + \omega_1 t + \varphi_1) + A_2 \cos(k_2 x + \omega_2 t + \varphi_2)

无法简化为单一正弦函数。若A1=A2=AA_1 = A_2 = Aφ1=φ2=0\varphi_1 = \varphi_2 = 0,可用和角公式:

f(x,t)=2Acos((k1x+ω1t)+(k2x+ω2t)2)cos((k1x+ω1t)(k2x+ω2t)2)f(x,t) = 2A \cos\left(\frac{(k_1 x + \omega_1 t) + (k_2 x + \omega_2 t)}{2}\right) \cos\left(\frac{(k_1 x + \omega_1 t) - (k_2 x + \omega_2 t)}{2}\right)=2Acos((k1+k2)x+(ω1+ω2)t2)cos((k1k2)x+(ω1ω2)t2)= 2A \cos\left(\frac{(k_1 + k_2)x + (\omega_1 + \omega_2)t}{2}\right) \cos\left(\frac{(k_1 - k_2)x + (\omega_1 - \omega_2)t}{2}\right)
分享

如果这篇文章对你有帮助,欢迎分享给更多人!

不同情况下两列波叠加情况计算
https://www.laoguantx.cn/posts/calculationofwavesuperpositionindifferentcases/
作者
老官童鞋gogo
发布于
2025-06-03
许可协议
CC BY-NC-SA 4.0

部分信息可能已经过时

封面
Sample Song
Sample Artist
封面
Sample Song
Sample Artist
0:00 / 0:00